Selective catalytic reduction of sulfur dioxide by carbon monoxide over iron oxide supported on activated carbon

نویسندگان

  • Guangjian WANG
  • Liancheng BING
  • Zhijian YANG
  • Jiankang ZHANG
چکیده

The selective reduction of sulfur dioxide with carbon monoxide to elemental sulfur was studied over ACsupported transition-metal oxide catalysts. According to the study, Fe2O3 /AC was the most active catalyst among the 4 AC-supported catalysts tested. By using Fe2O3 /AC, the best catalyst, when the feed conditions were properly optimized (CO/SO2 molar ratio = 2:1; sulfidation temperature, 400 ◦C; Fe content, 20 wt%; GHSV = 7000 mL g−1 h−1) , 95.43% sulfur dioxide conversion and 86.59% sulfur yield were obtained at the temperature of 350 ◦C. Catalyst samples were characterized by X-ray powder diffraction in order to relate the phase composition to the activation behavior and catalytic performance. The active phase of catalyst was detected as FeS2 , and the formation of FeS2 was greatly dependent on the sulfidation temperature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catalytic Oxidation of Carbon Monoxide by Cobalt Oxide Catalysts Supported on Oxidized-MWCNT

Cobalt oxide catalysts supported on oxidized multi-walled carbon nanotubes (MWCNT) for the low-temperature catalytic oxidation of carbon monoxide were prepared by an impregnation-ultrasound method. These catalysts were characterized by N2 adsorption/desorption, TEM, XRD, Raman, and H2-TPR methods. The XRD and Raman results indicated that the phase of the synthesized cobalt...

متن کامل

A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide

Various types of carbon-based and non-carbon-based catalyst supports for nitric oxide (NO) removal through selective catalytic reduction (SCR) with ammonia are examined in this review. A number of carbon-based materials, such as carbon nanotubes (CNTs), activated carbon (AC), and graphene (GR) and non-carbon-based materials, such as Zeolite Socony Mobil-5 (ZSM-5), TiO2, and Al2O3 supported mate...

متن کامل

Reduction of sulfur dioxide by carbon monoxide to elemental sulfur over composite oxide catalysts

The catalyst activity of fluorite-type oxide, such as ceria and zirconia, for the reduction of sulfur dioxide by carbon monoxide to elemental sulfur can be significantly promoted by active transition metals, such as copper. More than 95% elemental sulfur yield, corresponding to almost complete sulfur dioxide conversion, was obtained over a Cu-Ce-O oxide catalyst with a feed gas of stoichiometri...

متن کامل

Effects of Confinement in Carbon Nanotubes on the Performance and Lifetime of Fischer-Tropsch Iron Nano Catalysts

The effects of confinement in carbon nanotubes on Fischer-Tropsch (FT) activity, selectivity and lifetime of Carbon NanoTubes (CNTs) supported iron catalysts are reported. A method was developed to control the position of the catalytic sites on either inner or outer surface of carbon nanotubes. TEM analyses revealed that more than 80% of iron oxide particles can be controlled to be position...

متن کامل

Hydrogen Cyanide Production During Reduction of Nitric Oxide over Platinum Catalysts: Transient Effects.

The formation of hydrogen cyanide during the catalytic reduction of nitric oxide (NO) with carbon monoxide and hydrogen was studied with a bench-scale flow reactor. The previously reported inhibition by sulfur dioxide of the formation of hydrogen cyanide was found to be counteracted by transient admission of oxygen to the catalyst. These results are discussed in the context of the control of au...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013